Tornado Cash Classicのゼロ知識証明回路
回路構成
回路 | 説明 |
---|---|
merkleTree.circom |
|
withdraw.circom |
CommitmentHasher
テンプレート
// computes Pedersen(nullifier + secret)
template CommitmentHasher() {
signal input nullifier;
signal input secret;
signal output commitment;
signal output nullifierHash;
component commitmentHasher = Pedersen(496);
component nullifierHasher = Pedersen(248);
component nullifierBits = Num2Bits(248);
component secretBits = Num2Bits(248);
nullifierBits.in <== nullifier;
secretBits.in <== secret;
for (var i = 0; i < 248; i++) {
nullifierHasher.in[i] <== nullifierBits.out[i];
commitmentHasher.in[i] <== nullifierBits.out[i];
commitmentHasher.in[i + 248] <== secretBits.out[i];
}
commitment <== commitmentHasher.out[0];
nullifierHash <== nullifierHasher.out[0];
}
nullifier
とsecret
を入力して、commitment
とnullifierHash
を出力しています。nullifier
とsecret
はまず248ビットのNum2Bits
に変換されます。その後、Pedersen
回路を用いて、nullifier
とnullifier + secret
がPedersenハッシュ化されます。それぞれ、nullifierHash
, commitment
になります。
Withdraw
テンプレート
// Verifies that commitment that corresponds to given secret and nullifier is included in the merkle tree of deposits
template Withdraw(levels) {
signal input root;
signal input nullifierHash;
signal input recipient; // not taking part in any computations
signal input relayer; // not taking part in any computations
signal input fee; // not taking part in any computations
signal input refund; // not taking part in any computations
signal private input nullifier;
signal private input secret;
signal private input pathElements[levels];
signal private input pathIndices[levels];
component hasher = CommitmentHasher();
hasher.nullifier <== nullifier;
hasher.secret <== secret;
hasher.nullifierHash === nullifierHash;
component tree = MerkleTreeChecker(levels);
tree.leaf <== hasher.commitment;
tree.root <== root;
for (var i = 0; i < levels; i++) {
tree.pathElements[i] <== pathElements[i];
tree.pathIndices[i] <== pathIndices[i];
}
// Add hidden signals to make sure that tampering with recipient or fee will invalidate the snark proof
// Most likely it is not required, but it's better to stay on the safe side and it only takes 2 constraints
// Squares are used to prevent optimizer from removing those constraints
signal recipientSquare;
signal feeSquare;
signal relayerSquare;
signal refundSquare;
recipientSquare <== recipient * recipient;
feeSquare <== fee * fee;
relayerSquare <== relayer * relayer;
refundSquare <== refund * refund;
}
出力シグナルがありません。CommitmentHasher
のインスタンスにnullifier
とsecret
を入力して、nullifierHash
が一致するかどうかを確かめています。recipient
, relayer
, fee
, refund
が改竄されないために追加しています。
MerkleTreeChecker
テンプレート
// Verifies that merkle proof is correct for given merkle root and a leaf
// pathIndices input is an array of 0/1 selectors telling whether given pathElement is on the left or right side of merkle path
template MerkleTreeChecker(levels) {
signal input leaf;
signal input root;
signal input pathElements[levels];
signal input pathIndices[levels];
component selectors[levels];
component hashers[levels];
for (var i = 0; i < levels; i++) {
selectors[i] = DualMux();
selectors[i].in[0] <== i == 0 ? leaf : hashers[i - 1].hash;
selectors[i].in[1] <== pathElements[i];
selectors[i].s <== pathIndices[i];
hashers[i] = HashLeftRight();
hashers[i].left <== selectors[i].out[0];
hashers[i].right <== selectors[i].out[1];
}
root === hashers[levels - 1].hash;
}
DualMax
テンプレート
// if s == 0 returns [in[0], in[1]]
// if s == 1 returns [in[1], in[0]]
template DualMux() {
signal input in[2];
signal input s;
signal output out[2];
s * (1 - s) === 0
out[0] <== (in[1] - in[0])*s + in[0];
out[1] <== (in[0] - in[1])*s + in[1];
}
HashLeftRight
テンプレート
// Computes MiMC([left, right])
template HashLeftRight() {
signal input left;
signal input right;
signal output hash;
component hasher = MiMCSponge(2, 1);
hasher.ins[0] <== left;
hasher.ins[1] <== right;
hasher.k <== 0;
hash <== hasher.outs[0];
}